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Abstract
The inelastic scattering of low-energy electrons with the mobile part of the
electron density of free-electron-like materials is investigated. Based on the
dielectric theory for the homogeneous electron gas, the concept of Bohm and
Pines is adopted in order to separate the single-particle and collective basic
channels of the total inelastic rate. An effective screened potential is introduced
to describe the separated single-particle part. The role of the relative motion of
electrons, a kind of dynamical correlation effect, is modelled in this potential via
a physical argument. The results obtained show that the nontrivial correlated
motion of electrons may have a measurable influence on the result of dynamical
probing of a degenerate electron gas.

1. Introduction

The dynamical probing of correlated motions of the constituents of a many-body fermion
system is currently a very active subfield in physics. It is the subject of experiments based on
a variety of sophisticated methods and gives a challenge for theoretical attempts [1].

It is reasonable to suppose that at very low temperatures and in pure metals the damping
mechanism for an excited electron is due to inelastic transitions mediated by the coupling to
electronic excitations in the target. The first theoretical work [2] for metals investigated this
mechanism by using the electron gas model for the target, and the (linearized) self-consistent
field approximation to characterize the excitations [3]. Experiments performed to find the
lifetime [4] τ or inelastic mean free path lin in free-electron-like metals show, however,
remarkable and consistent deviations in comparison with this usual estimation in the low-
energy range, where the role of the relative motion of electrons is expected to be important.
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It is not the subject of the present theoretical work to discuss the inherent difficulties
of direct measurements on these quantities. For example, a measured attenuation length
may involve different effects in addition to the pure electronic one [5, 6]. We consider the
mentioned deviations as experimental motivation for a refined calculation within a basically
dielectric theory, which will also rest on the electron gas model [2].

Generally, for an interacting electron gas, the excitation spectrum is characterized by
dynamical structure functions S(q, ω) [7, 8], the spacetime Fourier transforms of correlation
functions. The basic electronic excitations, obtained from the density–density correlation
function, consist of screened single-particle excitations (particle–hole pairs) as well as
plasmons. The (linearized) self-consistent time-dependent Hartree approximation (random-
phase approximation, RPA) attempts a unified characterization of these basic excitations
[2, 3, 8]. The approximation treats the exact density–density response function χ(q, ω)

via its inverse; i.e., it models the dielectric function ε(q, ω) of the assembly. The RPA
theory contains only quite globally those details of the many-body system that are related
to the relative motion and interaction of electrons. This observation provides the theoretical
motivation for a refinement. This refinement will consider the possible influence of the relative
motion of scattering electrons on measurable quantities of dynamical probing. The electron
system is characterized by its density n0; the Fermi velocity vF and the Wigner radius rs are
vF = (3π2n0)

1/3 and rs = (1.92/vF ), respectively. Hartree atomic units are used throughout
this work.

2. Theory and results

The inelastic mean free path (lin) is defined as the distance which the intruder (or excited)
particle with kinetic energy E travels within its lifetime: lin = τ

√
2E = τv [8, 9]. The

lifetime (τ ) is related to the total rate of inelastic transitions that result in damping.
The perturbative description, based on the fluctuation–dissipation theorem (S(q, ω) ∝

Im χ(q, ω)�(ω)), gives the standard expression [10]:

1

τ
= 1

2π2

1

v

∫ �E

0
dω

∫ q+

q−
dq q |V (q)|2 Im χ(q, ω), (1)

where �E = E −EF � 0 at T = 0, due to the Pauli principle, and q± = v± (v2 −2ω)1/2 due
to the energy conservation ω = qv − q2/2. The basic interaction is V (q) = 4π/q2. For our
electron target system the Dyson-like form for the density–density response function, which
is a physical quantity, is [8]

1

χ(q, ω)
= 1

χ0(q, ω)
+ V (q), (2)

in which χ0(q, ω) is the noninteracting response function, the electron–hole propagator.
By taking the prescribed imaginary part for χ(q, ω) in equation (2) one obtains for the

integrand in equation (1) the following:

|V (q)|2 Im χ(q, ω) = |V (q)|2 Im χ0(q, ω)

|1 + V (q)χ0(q, ω)|2 . (3)

The interaction-mediated real transitions are weighted by the Lindhard dielectric function. A
free electron responds, in this picture, to a well behaved common external field [1–3].

As we are interested in the possible role of the relative motion of colliding electrons at
low and intermediate energies of the projectile (or excited) electron, we shall consider the
electron–hole and plasmon excitations separately. In other words, we adopt the concept of
Bohm and Pines [11]. They described the interacting electron gas as ‘individual’ electrons
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interacting with the collective, plasmon field at long range and with one another (decoupled
from the collective field) through short-range screened Coulomb collisions.

Therefore, by shifting the denominator of equation (3) under the first, coulombic factor, we
reinterpret the obtained expression as a dynamically screened (Vsc(q, ω)) effective interaction
to single-particle excitations. The independent particles interact, in this adopted picture, via
an effective potential as in the kinetic theory [8]. Of course, we shall use the complete
Im χ0(q, ω) expression in equations (3) and (1), which is the proper kinematical factor for
allowed (T = 0, ω � 0) real excitations.

Furthermore, and here is our physical motivation, in the small-ω range a straightforward
interpretation of the effective screening to the important particle–particle collision via a static
Lindhard dielectric function V RPA

sc (q) is questionable. This static screening would correspond,
in a self-consistent field treatment, to the fixed-impurity case. The effect of relative motion
needs a refined consideration, because the Pauli principle not only controls the kinematically
allowed transitions but restricts the momentum state of the probe fermion, too. We have a
‘mobile’ scattering pair embedded into the system.

In order to treat this problem [12], the screened potential is now modelled as [13, 14]

Vsc(q) = 4π

q2

[
1 − ω2

p

(q2/2)2 + b(q2/2) + ω2
p

]
, (4)

where ω2
p = 4πn0 = 3/r3

s .
The conventional b = (2/3)v2

F value would refer to the screening of a static unit-charge
impurity. By this value of b one could obtain pair functions which should be most appropriate
for electrons with zero wavenumbers. For ‘mobile’ charges the b = 2 × (2/3)v2

F modified
value was deduced [12, 14]. We adopt this enhanced value of b to characterize the separated
single-particle (sp) part of the damping (τsp). We note that a recent work of Holm and von
Barth [15] also emphasized the need of consistent modifications in a dielectric theory for both
the short- and long-range limits.

The long-range Coulomb interaction leads to a collective, classical mode: the plasmon
in an electron gas. It is the oscillation of the electrons as a whole and reflects an overall
polarization effect. In order to include this channel, here we employ the usual expression [16]
for the corresponding τpl :

1

τpl

= ωp

v
ln

qc

v − (v2 − 2ωp)1/2
. (5)

Quinn’s original estimation for the cut-off momentum is qc = (v2
F + 2ωp)1/2 − vF . Our

real-space potential Vsc(r) gives, using the standard screening-length argumentation [11], the
qc = ωp/[(b/2) +

√
ωp]1/2 form. The two forms yield, practically, the same qc values at

metallic densities. The above expression (equation (5)) is obtained from the RPA. As is well
known the plasmon pole is properly described in this simple (based on Hartree-only Green
functions) approximation.

The illustrative numerical results obtained for lin = vτ (τ−1 = τ−1
sp + τ−1

pl ) are exhibited
in figures 1 and 2 for rs = 2 and 4, respectively. The inset of figure 1 shows the inverse lifetime
in units of femtoseconds (fs). The small black dots are taken from the experimental work on
an Al target [4]. For further details on the role of intrinsic transport effects in these data, we
refer to that work. Our results show that the proper treatment of relative motions (an inherent
dynamical effect of system electrons) leads to reduction in the lifetime and the mean free path.
At low energies (a few eV above EF ), where the influence of the relative motion is expected to
be more important, the deviations are in the range of 50–60%. These tendencies are in accord
with those found in [5] by using different methods to estimate lin in the alkalis. The reduction
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Figure 1. Numerically determined lin and τ functions to characterize the inelastic electron
interaction with an electron gas of rs = 2. The black dots refer to ‘uncleaned’ experimental data
obtained for an Al target [4]. Dashed and dash–dotted curves are based on τsp with b = (2/3)v2

F

and b = (4/3)v2
F in equation (4), respectively. The dotted curve is based on the common τpl , Thin

and thick solid curves are based on the corresponding total τ values.
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Figure 2. Theoretical lin functions, at the rs = 4 value of the Wigner–Seitz parameter. The
meanings of the curves are the same as in figure 1.
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found is due to the reduced screening in the present model. Remarkably, similar reductions
in the effective screening for electron–electron interaction were deduced from a numerical
simulation on electron relaxation dynamics [17], and via a consistent theoretical calculation
for the (static) screened exchange energy [18]. The correctly screened interaction is one of the
basic problems in many-body calculations [19].

In conclusion, based on a basically dielectric theory for the homogeneous electron gas and
the concept of separated single-particle and collective density excitations, the role of electron
kinematics in screening is quantified. It is found that the effect studied may have a measurable
influence on the results of dynamical probing of inherent excitations.
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